Industrial Integration made easy
ConnectorlIO openhab bindings

ConnectorlIO sp. z o.o0.

Version 2.5.1-M1-20200504, 2020-05-04T00:07:03Z

Table of Contents

Colophon
1. Why?
2. Introduction
3. Installation and upgrade
3.1. Step by step guide
3.2. Upgrade procedure
4. Bindings
4.1. BACnet
4.2. Beckhoff ADS
4.3. Siemens S7

5. Notes

o o o 1 U1 U1 b W

_ =
N O

Colophon

Published by ConnectorlO sp. z 0.0.
© 2020 by The ConnectorIO sp z o.o.
This documentation provided as-is for information purposes.

The ® sign indicates that given name or logo is a registered trademark. We respect copyright, and
we value trademarks of others. BACnet, Apache PLC4X, Siemens, Beckhoff are all registered
trademarks belonging to its respective owners. Above names mentioned in this documentation are
to give credits to producers of awesome equipment and libraries. They are not listed here for
advertising or affirmation purposes.

This document describes installation and configuration procedure of ConnectorIO bindings in
openHAB. openHAB is popular home automation software, however its architecture is flexible and
allows connectivity with various hardware. From our point of view the HAB part of that name is
"Hardware Abstraction Bus", and it is used in such a way by us. Vanilla openHAB connect devices
such as heating boilers, multimedia systems down to small sensors or smart meters. It has also
support for Modbus, solar inverters, energy meters some PLC kinds and other serial based
communications.

Chapter 1. Why?

ConnectorIO addons allow plugging typical industrial protocols and hardware to openHAB. You
might be curious, why bother? Well, there are few reasons, but the primary one is really ability to
visualize and store received data in a unified way. openHAB is quite compact when it is properly
installed thus can be used as IoT gateway. With ConnectorIO bindings it will not become an IIoT
gateway right away, however will gather connectivity abilities typical for these.

A below legend indicates with dark blue color components developed and solely maintained by
ConnectorIO. Other colors indicate major dependencies used by us to provide desired functionality.
To matter of fact, ConnectorIO bindings are third party addons for openHAB.

Maintained by ConnectorlO

Apache PLCA4dx project, open source

BACnet, ISO/ASHRAE standard

User interface level

Web Browser / Mobile Device / IT system |

Azure/Amazon/Google
and infrastructure
provided by them

Siemens Beckhoff BACnet
S7 ADS Binding
Binding Binding

Apache PLC4X API BACnetd] Wrapper API Libra

Level
Hardware /
Beckhoff BACnetd) BACnet4] Protocol level
ADS 1P MSTP

Siemens
57

Driver

Driver

Siemens BACnet BACnet BACnet
S7 HVAC Zone Enabled Device level
PLC Device Controller PLC

Chapter 2. Introduction

This documentation describes mainly how to configure industrial integrations supplied by
ConnectorIO. In order to fully understand, "how" various assets are organized in openHAB, you
need to learn some basic terms.

Main concepts which are used in openHAB are:

* bridges - usually represents a connection or complex element which can have things. Be aware,
that bridge can be a child of another bridge too.

* things - representation of a given functionality, typically representing a piece of hardware or
software function. Main responsibility of this element is to group operations of certain asset in
one place.

* channels - each thing might have 0 and more channels which are inputs or outputs, generally
speaking functions. A channel represents a single, atomic value or switch which can be
controlled. One channel can have 0 or more linked items.

* items - items are elements which are created for visualisation and/or persistence reasons. Since
one "thing" can have multiple "channels" the item allows selecting which channels of a device to
track.

* links - it is a relation between item and channel. For each item there is one link.
Keep in mind above definitions because they will be referred in this documentation. Bindings
provided by ConnectorIO give possibility to create bridges and things which do represent industrial

hardware. First three elements are defined by shipped integration software, while later two are
user responsibility.

If you still look for additional explanation please read more about concepts used in openHAB.

https://www.openhab.org/docs/concepts/

Chapter 3. Installation and upgrade

Each ConnectorIO binding is one archive. These archives have a KAR extension in their file name. If
you need to use multiple protocols then you will need to repeat below procedure for each of them.

3.1. Step by step guide

First of all you need to install openHAB. Please follow official openHAB documentation and find
instructions for your hardware platform.

Once your openHAB is up and running you can proceed to installation of bindings.

1. Download selected addons.
2. Locate your openHAB installation.

3. Find addons folder. @ With standard linux/openhabian installations it s
/usr/share/openhab2/addons.

Copy KAR to this folder.

Launch browser.

Navigate to openHAB server user interface.
Pick paperUI from openHAB dashboard.

Navigate to Addons > Bindings.

© ®©® N o Uk

Find integration you plan to install by typing protocol or brand name in search box.

10. Click install and wait for operation to complete.

3.2. Upgrade procedure

Because there is no guarantee which version of binding will start first you need to uninstall earlier
version manually. The procedure for uninstalling is following:

Launch browser.

Navigate to openHAB server user interface.

Pick paperUI from openHAB dashboard.

Navigate to Addons > Bindings.

Find integration you plan to update.

Click uninstall.

Go to addons directory and remove selected KAR file.

©® N e ok~ w e

Restart openHAB.

Do not worry about things which you created before. Their definitions and configurations will be
kept in openHAB database. During upgrade, you will just loose ability to read their state. After
successful installation of new version, they should automatically be back to "online" state.

https://www.openhab.org/docs/installation/

Chapter 4. Bindings

4.1. BACnet

BACnet is shortcut of "Building Automation and Control Networks". As name suggests this protocol
is very popular in building automation and control applications for HVAC but also other elements
in infrastructure. BACnet is an open standard both in North America (ASHARE) and worldwide
(IS0).

The protocol initially defined 23 standard object types, kinds of inputs/outputs and their role in
automation systems. However this number grew up since 1990’s.

The ConnectorIO BACnet binding allows to read values from the BACnet network as well as write
(command) compatible devices from openHAB.

o Currently, this binding uses library licensed under GPL license. Consider that if
you plan to use related code commercially.

4.1.1. Supported hardware

All devices capable of communication BACnet.

4.1.2. Supported things and bridges

Thing Type Name Description

ipv4 bridge BACnet/IP bridge The BACnet/IP bridge
allows to connect
devices supporting
communication over
BACnet/IP.

ip-device bridge BACnet/IP device Device which is
commendable over
network connection.

mstp bridge BACnet/MSTP Bridge The BACnet mstp
bridge allows to
connect devices
communicating over
serial interface (RS485).

mstp-device bridge BACnet/MSTP device Device which is
commendable over
serial connection.

Following object types are supported:

* Analog input / output / value

* Binary input / output / value
* Multi state input / output / value

* Pulse converter
For test purposes below object types are available, however they are not officially supported.

* Schedule (not working)
* Character String
* Large analog
* Octet String
* Time
* Integer
* Positive Integer
* Date Time Pattern
* Time Pattern
* Date Pattern
* Accumulator
In order to start reading data from BACnet or commanding devices you need to create a valid

connection (mstp or ipv4). Once done then you can start adding mstp-device or ip-device instances.
Because BACnet objects have multiple properties they are modelled as separate things.

A Currently binding supports only reading/writing of Present Value property.

A Binding does not support Change of Value (COV) notifications yet.

4.1.3. Textual configuration

Below is example of a text configuration which you can upload to your openhab. It allows to use a
regular version control system to track changes over time. The same can be done via user interface.

Bridge co7io-bacnet:ipv4:local "BACnet Network" [localNetworkNumber=0,
localDeviceId=1010, localBindAddress=10.10.10.10, broadcastAddress="10.10.10.255"] {

Bridge ip-device "HVAC unit" [address="10.10.10.20", instance=1, network=0] {
Thing analog-intput "Exhaust Temperature" [refreshInterval="500"] {
channels:
Type writeableNumber: ail "Temperature reading" [instance=1]

}
Thing analog-intput "Supply Temperature" [refreshInterval="500"] {
channels:
Type writeableNumber: ai2 "Temperature reading" [instance=2]
}

4.2. Beckhoff ADS

The "ADS" shortcut stands for "Automation Device Specification". It is often used with "AMS" which
might be decoded as "Automation Message Specification". We do distinguish these terms cause they
have different role. AMS is a routing and virtual networking layer and ADS is data exchange layer
built on top of it. In order to communicate with ADS devices you must have AMS capabilities first.

Devices which are compatible with this protocol are usually Windows based PLCs of the same
brand.

The ConnectorIO ADS binding allows to read values from the PLC as well as write it based on values
set in openHAB.

4.2.1. Supported hardware

All devices capable of communication AMS/ADS.

4.2.2. Supported things and bridges

Thing Type Name Description
ams bridge Beckhoff AMS/ADS Defines AMS identifiers
Network for communicating

with other devices.

network bridge Beckhoff ADS Network TCP/IP Connection to
Bridge Beckhoff PLC
serial bridge Beckhoff ADS Serial Serial port connection
Bridge to Beckhoff PLC (note -
not tested).

Thing Type Name Description

ads thing Beckhoff ADS device A PLC with ADS
communication
capabilities which can
be polled for data.

In order to start reading data you need to create at least one ams bridge with network or serial
connection. Once done then you can start adding ads devices. Be aware that there might be multiple
ads devices for single connection allowing to group PLC inputs and outputs. If your PLC controls
multiple motors then each of them can be created as a ads thing with separate state.

Because it is possible to configure polling (sampling) interval for each of above elements you can
also group I/O by frequency of updates.

4.2.3. Textual configuration

Below is example of a text configuration which you can upload to your openhab. It allows to use a
regular version control system to track changes over time. The same can be done via user interface.

Bridge co7io-plc4x-ads:ams:local "My connection" [sourceAmsId="10.10.10.10.1.1",
sourceAmsPort="30000", ipAddress="10.10.10.10", broadcastAddress="10.10.10.255"] {

Bridge network [targetAmsId="10.10.10.20.1.1", targetAmsPort="851",
host="10.10.10.20"] {
Thing ads "Inputs" [refreshInterval="500"] {
channels:
Type switch: Input@@1 "Input 001" [field="0x0000/0x0001:B00L"]
Type switch: Input@02 "Input 002" [field="0x0000/0x0002:B00L"]
Type switch: Input@03 "Input 003" [field="0x0000/0x0003:B00L"]
Type switch: Input0@4 "Input 004" [field="0x0000/0x0004:B00L"]
Type switch: Input@@5 "Input 005" [field="0x0000/0x0005:B00L"]
}

Thing ads "Outputs" [refreshInterval="500"] {
channels:
Type switch: Output@@1 "Output 001" [field="0x0001/0x0001:B00L"]
Type switch: Output@@2 "Output 002" [field="0x0001/0x0002:B0O0OL"]
Type switch: Output@@3 "Output 003" [field="0x0001/0x0003:B0O0OL"]
Type switch: Output0@4 "Output 004" [field="0x0001/0x0004:B00L"]
Type switch: Output@@5 "Output 005" [field="0x0001/0x0005:B00L"]

Create multiple things to manage inputs and outputs of your device in an
O organized way. All of them will reuse the same network or serial connection. Their
- . o . . .
role is to make navigation over complex installations easier.

4.3. Siemens S7

The "S7" shortcut stands for "Step 7".

Devices which are compatible with this protocol are usually Siemens PLCs. The ConnectorIO S7
binding allows to read values from the PLC as well as write it based on values set in openHAB.

4.3.1. Supported hardware

Models supported by this integration are S7-300, 400, 1200, 1500 and Logo which uses same
protocol.

4.3.2. Supported things and bridges

Thing Type Name Description
network bridge Siemens S7 TCP/IP TCP/IP Connection to
Bridge Siemens PLC
s7 thing Siemens S7 device A PLC with S7
communication
capabilities which can
be polled for data.

In order to start reading data you need to create at least one network bridge with s7 device. Be
aware that there might be multiple s7 devices for a single connection allowing to group PLC inputs
and outputs. If your PLC controls multiple motors then each of them can be created as a s7 thing
with separate state.

Because it is possible to configure polling (sampling) interval for each of above elements you can
also group I/0O by frequency of updates.

4.3.3. Textual configuration

Below is example of a text configuration which you can upload to your openhab. It allows to use a
regular version control system to track changes over time. The same can be done via user interface.

10

Bridge co7io-plcdx-s7:network:local "S7-1200 vYXZ" [host="10.10.10.10", rack=0,
slot=0] {

Thing s7 "Inputs" [refreshInterval="500"] {
channels:
Type switch: Input@@1 "Input 001" [field="10.1:BO0L"]
Type switch: Input002 "Input 002" [field="10.2:BOO0L"]
Type switch: Input@@3 "Input 003" [field="10.3:BOO0L"]
Type switch: Input0@4 "Input 004" [field="10.4:BOO0L"]
Type switch: Input@@5 "Input 005" [field="10.5:BO0L"]
}

Thing s7 "Outputs" [refreshInterval="500"] {
channels:
Type switch: Output@@1 "Output 001" [field="Q0.1:BOOL"]
Type switch: Output@@2 "Output 002" [field="Q@.2:BOOL"]
Type switch: Output@@3 "Output 003" [field="Q@.3:BOOL"]
Type switch: Output@@4 "Output 004" [field="Q0.3:BOOL"]
Type switch: Output@@5 "Output 005" [field="Q®.5:BOOL"]

Create multiple things to manage inputs and outputs of your device in an
(g
O organized way. All of them will reuse the same network or serial connection. Their
-
role is to make navigation over complex installations easier.

Chapter 5. Notes

5.1. Changelog

Below list contains summarized list of changes which been introduced over time. Above
documentation describes latest state of integration. In case if you run older version of integration,
please make sure you check earlier documentation.

Release 20200504

Released on May 4th, 2020. Compatible with openHAB 2.5.x.

* [Beckhoff] Support for discovery of network enabled devices.
* [Beckhoff] Fixes for doubled connections opened by binding.

* [Beckhoff] Reorganization of connection parameters, introduced Beckhoff AMS/ADS Network
bridge.

* Fixes for possible errors while writing values to through Apache PLC4X API.

Release 20200102

Released on January 2nd, 2020. Compatible with openHAB 2.5.x.

* [Beckhoff] Fix for error in connection settings causing binding to fail.

* [Beckhoff, Siemens] Introduced support for numeric values.

Release 20191231

Released on December 31th, 2019. Compatible with openHAB 2.5.x.

* Initial release with possibility to connect a S7 or ADS device and read binary input/output.

12

	Industrial Integration made easy: ConnectorIO openhab bindings
	Table of Contents
	Colophon
	Chapter 1. Why?
	Chapter 2. Introduction
	Chapter 3. Installation and upgrade
	3.1. Step by step guide
	3.2. Upgrade procedure

	Chapter 4. Bindings
	4.1. BACnet
	4.2. Beckhoff ADS
	4.3. Siemens S7

	Chapter 5. Notes

